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Severe aplastic anemia (SAA), a rare but potentially life-threatening disease, is the paradigm of bone 
marrow failure syndromes. Mesenchymal stem cells (MSCs) are crucial in providing the specialized 
bone marrow microenvironment required for hematopoiesis. Deficiency in the bone marrow 
microenvironment is a potential factor for the development of SAA. In this review article, we describe 
the association of MSCs and SAA, focusing mainly on the alterations in MSCs from patients with 
SAA. Further, we address the benefits of MSC infusion in SAA animal models and in human clinical 
applications. 
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Introduction

Severe aplastic anemia (SAA), a rare but 
potentially life-threatening disease, is the paradigm 
of bone marrow (BM) failure syndromes. While 
there have been signif icant advances in the 
management of this disease, the etiology of SAA 
has not been completely elucidated. Mesenchymal 
stem cells (MSCs), first described by Friedenstein 
in 1966 [1], play an important role in providing the 
specialized BM microenvironment needed for 

survival and differentiation of hematopoietic stem 
cells (HSCs). Deficiency in or dysfunction of the 
BM microenvironment could predispose patients to 
the development of SAA.

In this review article, we describe the association 
of MSCs and SAA, focusing mainly on the 
alterations in MSCs from patients with SAA. We 
address the benefits of MSC infusion in SAA 
animal models and in human clinical applications.

Mesenchymal Stem Cells
There are three main cellular systems in the 

BM: hematopoietic, endothelial, and stromal [2]. 
The stromal cell system, first proposed by Owen in 
1985 [3], provides the essential microenvironment 
for hematopoiesis in the BM. MSCs, a natural 
component of stromal BM, constitute a small 
percentage of cells, about one in 3.4 × 104, that 
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support hematopoiesis [4]. As the so-called stem 
cells, MSCs maintain a level of self-renewal and 
are capable of differentiating into a variety of 
mesenchyme-lineage cells. In the BM, MSC-
derived stromal cells establish an appropriate 
scaffold and a complex network of cytokines, 
g row t h  fac tor s ,  ad hesion  molecu le s ,  a nd 
extracellular matrix components [5,6]. Many studies 
have demonstrated the positive effects of MSCs 
on in vitro HSC expansion [7-11]. In animal models, 
infusion of MSCs has been shown to enhance HSC 
engraftment during transplantation [11-14]. 

While BM remains a traditional source of 
MSCs, they can be isolated from a variety of 
adult and fetal tissues, including peripheral blood, 
adipose tissue, dental pulp, placenta, amniotic fluid, 
amniotic membrane, Wharton’s jelly of umbilical 
cord, and cord blood [15-22]. Generally, the frequency 
of MSCs is higher in fetal t issues. Despite 
inconsistent definitions among investigators, 
MSCs are characterized by their in vitro growth 
pattern, expressions of specific surface markers, 
and multipotent differentiation potential according 
to the International Society for Cellular Therapy 
criteria [23]. Having a high proliferative capacity, 
MSCs possess a spindle-shaped f ibroblastic 
morphology in vitro. In addition, they express a 
panel of surface markers positive for mesenchymal 
ant igens (CD105 and CD73) and adhesion 
molecules (CD29, CD44, CD106, and CD90) and 
negative for hematopoietic antigens (CD34, CD45, 
CD14, CD11b, CD19, CD79α, and HLA-DR). With 
a broad differentiation potential, the most unique 
property for identifying MSCs is their capacity for 
tri-lineage mesenchymal differentiation into bone, 
fat, and cartilage. 

MSCs possess profound immunomodulatory 
effects. Many studies have demonstrated that 
MSCs can mediate immunomodulatory effects 
by interacting with immune cells from both 
innate (dendritic cells and natural killer cells) and 
adaptive (T cells and B cells) systems [24-33]. Along 
with modifying the secretion of various cytokines, 
MSCs can orchestrate the direct cell-to-cell contact 
and microenvironment between the interacting 
populations [34,35]. Moreover, MSCs express HLA-
class I, but not class II molecules. Many in vitro 

and in vivo studies have demonstrated that MSCs 
can escape recognition by the alloreactive immune 
system [35-37]. Due to low immunogenicity, MSCs 
possess great utility in clinical cell-based therapy.

Severe Aplastic Anemia
SAA is a rare but potentially life-threatening 

disease with an annual incidence of one to six 
per million [38-42]. The incidence is higher in Asia 
than in the West [43, 44]. SAA is characterized by 
pancytopenia resulting from hypocellular BM 
without infiltration or fibrosis. The criteria for 
SAA diagnosis include BM cellularity of less than 
25% with at least two of the following conditions: 
absolute neutrophil count less than 0.5 × 109/L, 
platelet count less than 20 × 109/L, and reticulocyte 
count less than 1% [38,45-47]. 

SAA is considered heterogeneous in origin. 
Fi r s t  descr ibed by Eh rl ich as  an “empt y” 
appearance of the BM in a pregnant woman [48], 
precipitating factors have been investigated based 
on patient history. A variety of environmental and 
host factors have also been described. However, 
a specif ic cause cannot be identif ied in most 
patients, and this is referred to as idiopathic SAA. 
Immune-mediated HSC destruction is the most 
widely accepted pathogenesis of idiopathic SAA 

[44]. The impact of T cell attack on BM has been 
demonstrated in vitro and in vivo [49-54]. However, 
non-immune etiopathogenesis has been inferred 
from a failure to respond to immunosuppressive 
therapy (IST). Primary HSC deficiencies, including 
decrease in number and dysfunction, are potential 
factors associated with the development of SAA 

[55-58]. More recently, deficiency in or dysfunction 
of the BM microenvironment has been considered 
a factor in hematopoietic impairment in SAA 
patients.

SAA was almost uniformly fatal until the 
1970s. Significant advances have been made in 
the management of this disease in recent decades. 
Definitive therapies for SAA are IST and HSC 
transplantation (HSCT), with comparable long-term 
survival for both modalities [59]. HSCT is considered 
the first choice for patients under 40 with a matched 
sibling donor, although this treatment is still limited 
by the long-term complications of graft-versus-host 
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disease and secondary malignancies [44,45]. Overall 
survival is 85-90% with best results in younger 
patients. Survival rate is only 50% for those over 
40 [60]. IST is indicated for those 40 and over and 
those under 40 without a matched sibling donor. 
Immunosuppressive agents used in the treatment of 
SAA exert their action by reducing hematopoietic 
suppression from autoreactive immune cells [44]. 
Most specialists use an antithymocyte globulin-
based regimen in combination with cyclosporine, 
which produces hematologic recovery in about 60-
70% of patients [59]. As the outcome of unrelated 
donor HSCT is still not as favorable as that of a 
matched sibling donor, it is not recommended as 
first-line therapy for SAA, even in younger patients 

[59].

Alterations in Mesenchymal Stem Cells from 
Patients with Severe Aplastic Anemia

Insufficiency in the BM microenvironment, of 
which MSCs are an important element, could be 
a potential factor for hematopoietic impairment 
in SAA. Many studies have been conducted to 
investigate alterations in MSCs in patients with 
SAA. In vitro, SAA MSCs fail to grow complete 
conf luent stromal layers to maintain HSCs [61-

63]. Using basic properties as indicators [23], we 
found that SAA MSCs have poor potential for 
proliferation and differentiation [64]. In addition, the 
apoptotic rate of SAA MSCs is high [65]. The cellular 
elements in the BM microenvironment markedly 
decrease in patients with SAA, suggesting an 
association between impaired HSC niches and 
SAA [66]. Deficiency in immunomodulatory abilities 
of SAA MSCs, including suppression of CD4 
(+) T cell proliferation, promotion of regulatory 
T cell expansion, and regulation of release of 
cytokines, has been demonstrated, indicating loss 
of immunoprotection in SAA BM [67,68]. Taken 
together, these f indings provide evidence for 
functionally abnormal microenvironment in SAA 
BM, which may result from defects in MSCs.

Aberrant gene expression profiles have been 
found in SAA MSCs on microarray assay [65,69]. In 
addition, there is downregulation of CXCL12 gene, 
which is important in the regulation of signaling 
pathways involving HSC survival, proliferation, 

adhesion, and migration [70-72], in SAA MSCs 

[69]. A low expression level of FGF2 gene, which 
can preserve long-term repopulating ability of 
HSCs [73], has also been found in SAA MSCs [74]. 
Downregulation of GATA-2 and overexpression 
of PPARγ gene in SAA MSCs explain the fatty 
marrow replacement in patients with SAA  [75]. 
In addition to aberrant gene expressions, SAA 
MSCs have been found to overexpress membrane-
bound IL-15, stimulating T cell proliferation 

[76]. These findings regarding the defects of SAA 
MSCs further confirm their abnormal biological 
properties and provide significant evidence for the 
possible mechanism of the destruction of the BM 
microenvironment in SAA.

Effects of Mesenchymal Stem Cell Infusion in 
Animal Models of Severe Aplastic Anemia

Several animal studies have been conducted to 
evaluate the potential effects of MSC infusion on 
SAA. In mice with irradiation-induced SAA, MSC 
infusion ameliorates cytopenia in the peripheral 
blood [77-80], enhances hematopoietic recovery in 
the BM [77-79,81], decreases apoptosis of BM cells 

[77-79], and improves survival [77,78,81]. The anti-
apoptotic effects of MSCs are mediated through 
the PI3K/Akt pathway [79]. In addition to attenuating 
rad iat ion-induced hematopoiet ic  tox icit y, 
MSCs provide immunoprotection by alleviating 
lymphocy te-mediated CFU-GM inhibit ion, 
enhancing regulatory T cell expansion, modulating 
the expression of T cell chemokine receptors, 
and skewing the Th1/Th2 balance toward anti-
inflammatory Th2 polarization [81].

In mice with irradiation-induced SAA, co-
infusion of MSCs with autologous HSCs facilitates 
hematopoietic reconstitution. The effect of MSCs 
is dose-dependent and associated with increased 
homing of transplanted HSCs, indicating that 
MSCs act as HSC car r iers to assist in their 
migration and homing to BM niches [82]. To mimic 
the pathogenesis of immune-mediated HSC 
destruction in SAA, a radiation- and immunity-
induced mouse SAA model was used to exam the 
role of MSCs in HSCT. Co-infusion of HSCs and 
MSCs was better than HSCT alone, with improved 
survival and increased hemoglobin levels in the 
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peripheral blood [83]. Despite different origins of 
MSCs, the above studies demonstrate benefits of 
MSC infusion in SAA animal models, with and 
without HSC co-infusion.

Clinical Applications of Mesenchymal Stem 
Cells in Severe Aplastic Anemia

Clinical applications of MSCs are evolving 
rapidly. With the capacity to differentiate into 
various connective tissue lineages, MSCs have been 
widely used in tissue repair and regeneration [84]. 
With the potential for hematopoietic support and 
immunomodulation in the BM microenvironment, 
MSCs can be used effectively and safely for 
enhancement of engraftment [85-88], prevention and 
treatment of graft failure [88,89], and management of 
graft-versus-host disease in HSCT [90-92]. 

SAA is a BM failure syndrome associated 
with immune-mediated HSC destruction and 
microenvironmental insufficiency in the BM. 
As previously described, MSCs are a promising 
therapy. In 2003, Fouillard et al. first reported one 
patient with idiopathic SAA who failed to respond 
to initial IST and was treated with MSC infusions. 
Recovery of the stromal niche and hematopoiesis 
in the BM was noted [93]. Later, a clinical trial using 
MSCs to treat refractory SAA was conducted [94]. 
Six of the 18 patients (33%) showed complete or 
partial responses to MSC treatment. A possible 
mechanism by which MSCs promote hematopoietic 
recovery is increase in regulatory T cells. In 2015, 
Cle et al. reported the results of a phase 1/2 trial, 
adding MSC infusions to the standard second-line 
treatment with IST for SAA [95]. Two of nine (22%) 
patients achieved partial hematologic responses at 6 
months after therapy. The discrepancy in responses 
to MSC treatment in SAA may be explained by 
the diversity of the disease itself (e.g., patient age, 
etiology, severity, stage) and that of treatment 
methods (e.g., previous therapies, MSC dose per 
infusion, number of MSC infusions).

HSCT is  a  def in it ive therapy for  SA A, 
especially for those refractory to first-line IST. 
However, there are significant risks of graft failure 
and graft-versus-host disease in allogeneic HSCT 
for SAA. With the potential for hematopoietic 
support and immunomodulation, additive MSC 

infusions may be beneficial in HSCT for SAA. 
Accordingly, we co-infused umbilical cord-derived 
MSCs into two patients with refractory SAA 
during unrelated donor HSCT [96]. Both patients 
achieved rapid hematopoietic recovery without 
severe infusion-related side effects. Consistent with 
our results, Si et al. reported that 37 patients with 
SAA who received HSCT and subsequent MSC 
infusion demonstrated prompt HSC homing and 
engraftment [97].

Further Clinical Considerations
Here, we address the association of MSCs 

with SAA and the use of MSCs in SAA animal 
models and patients with SAA. MSCs appear 
to be a promising therapy for SAA, but several 
important issues need to be addressed in terms 
of their clinical application. The f irst is the 
quality of MSCs for clinical use, such as available 
sources, the convenience of obtaining MSCs, 
the quality control of in vitro-culturing, and the 
appropriate passage number. The second is the 
use of MSCs for SAA, including disease status, 
patient characteristics, optimum cell dose, number 
of infusions, and concurrent treatment (HSCs, 
immunosuppressants). Finally, long-term safety 
needs to be assessed in future studies, although no 
severe short-term adverse effects of MSC infusion 
have been observed.
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